EPSS C179/279 Search for Extraterrestrial Intelligence: Theory and Applications Spring 2016 WF 1:00 pm - 3:00 pm Young 4232

Course Description:

The Search for Extraterrestrial Intelligence (SETI) is based on a number of astronomical, mathematical, statistical, and computational principles. This course covers fundamental concepts in these disciplines in the context of SETI: abundance and architecture of extrasolar planetary systems; radio astronomy, including wave propagation and dispersion; signal processing, including sampling theory and Fourier transforms; random processes, including Gaussian and Poisson statistics, and algorithm development. During the laboratory component of the course, students design an observational program, acquire telescopic data, develop algorithms to analyze the data, and write a report on the results.

Lectures (two hours/week) are supplemented with weekly laboratory modules in a computer lab (two hours/week).

Instructor:

Professor Jean-Luc Margot 5642 Geology (310) 206-8345 jlm@epss.ucla.edu

Teaching assistant:

Textbook:

There is no required textbook. Optional textbooks include: Bracewell, R. The Fourier Transform and Its Applications, McGraw-Hill, 2nd edition, revised, 1986. Bevington, R. Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, 2nd edition, 1992

EPSS C179/279 website:

https://ccle.ucla.edu/course/view/16S-EPSSCIC179-1

Earth, Planetary, and Space Sciences C179/279: SETI - Spring 2016

Date	Lec/Lab	Title	Computer
W Mar. 30	L01	Introduction, motivation, logistics Radio astronomy fundamentals	
F Apr. 01	L02	Computational techniques, Python Celestial coordinates	Alt-Az
W Apr. 06	L03	Design of observing program (part 1)	LST
F Apr. 08	L04	Design of observing program (part 2)	GPS
W Apr. 13	L05	Design of observing program (part 3)	Trav. Sal.
		Observing with Green Bank Telescope	
F Apr. 15	L06	Observation debrief	Мар
W Apr. 20	L07	Fourier transform, sampling theorem	FFT
F Apr. 22	L08	Time-frequency diagrams	Time-Freq
W Apr. 27	L09	Wave radiation & propagation, Doppler shift	Voyager 1
F Apr. 29	L10	Natural vs. artificial signals	Shift & add
W May 4	L11	Exoplanets, orbital dynamics	Tree alg./Git
F May 6	L12	Gaussian and Poisson Statistics	Histograms
W May 11	L13	Telecommunication principles, interference	Excision
F May 13	L14	Observing with Arecibo	
W May 18	L15	Guest lecture: Larry Lesyna	Pipeline
F May 20	L16	Dispersion in interstellar medium	Pipeline
W May 25	L17	Optical and infrared SETI	Pipeline
F May 27	L18	Relativity, interstellar travel, Fermi paradox	Pipeline
W Jun. 1	L19	Final project	
F Jun. 3	L20	Final project	
		Final exam	

GRADING

Undergraduate students: grading is based on five problem sets (25%), a final exam (25%), and a final project (50%) that **will not** require implementation of algorithms for wave dedispersion and excision of radio-frequency interference. There is no mid-term exam.

Graduate students: grading is based on five problem sets (25%) and a final project (75%) that **will** require implementation of algorithms for wave dedispersion and excision of radio-frequency interference. There is no mid-term exam.

DISCUSSION SECTIONS

Students enrolled in EPSS C179/279 conduct weekly exercises in the computer lab (Young 4232).

OFFICE HOURS

Jean-Luc Margot

M 1-2 pm (consider calling ahead 310 206 8345)

THE FINE PRINT

You are responsible for all material covered in lectures or reading. A PDF version of the lecture notes will be posted on the course web page.

Academic integrity is expected at all times and violations will be reported to the Dean of students. Collaboration between students is never permitted except when explicitly allowed by the instructor. All students enrolled in EPSS C179/279 are expected to have read the relevant policies at

http://www.studentgroups.ucla.edu/dos/assets/documents/StudentGuide.pdf