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Abstract

We conducted a search for technosignatures in 2018 and 2019 April with the L-band receiver (1.15–1.73 GHz) of
the 100 m diameter Green Bank Telescope. These observations focused on regions surrounding 31 Sun-like stars
near the plane of the Galaxy. We present the results of our search for narrowband signals in this data set, as well as
improvements to our data processing pipeline. Specifically, we applied an improved candidate signal detection
procedure that relies on the topographic prominence of the signal power, which nearly doubles the signal detection
count of some previously analyzed data sets. We also improved the direction-of-origin filters that remove most
radio frequency interference (RFI) to ensure that they uniquely link signals observed in separate scans. We
performed a preliminary signal injection and recovery analysis to test the performance of our pipeline. We found
that our pipeline recovers 93% of the injected signals over the usable frequency range of the receiver and 98% if we
exclude regions with dense RFI. In this analysis, 99.73% of the recovered signals were correctly classified as
technosignature candidates. Our improved data processing pipeline classified over 99.84% of the ∼26 million
signals detected in our data as RFI. Of the remaining candidates, 4539 were detected outside of known RFI
frequency regions. The remaining candidates were visually inspected and verified to be of anthropogenic nature.
Our search compares favorably to other recent searches in terms of end-to-end sensitivity, frequency drift rate
coverage, and signal detection count per unit bandwidth per unit integration time.

Unified Astronomy Thesaurus concepts: Search for extraterrestrial intelligence (2127); Technosignatures (2128);
Astrobiology (74); Exoplanets (498); Solar analogs (1941); Radio astronomy (1338); Milky Way Galaxy (1054)

Supporting material: machine-readable table

1. Introduction

We describe a search for radio technosignatures with the L-
band receiver of the 100 m diameter Green Bank Telescope
(GBT). We used a total of 4 hr of GBT time in 2018 and 2019
to observe the regions around 31 Sun-like stars near the plane
of the Galaxy. We have so far prioritized the detection of
narrowband (∼10 Hz) signals because they are diagnostic of
engineered emitters (e.g., Tarter 2001).

Our search builds on the legacy of technosignature searches
performed in the period 1960–2010 (Tarter 2001; Tarter et al.
2010, and references therein) and previous searches conducted by
our group (Margot et al. 2018; Pinchuk et al. 2019). Other recent
searches include work conducted by Siemion et al. (2013), Harp
et al. (2016), Enriquez et al. (2017), Gray & Mooley (2017), and
Price et al. (2020).

Our choice of search parameters has key advantages
compared to the Breakthrough Listen (BL) searches described
by Enriquez et al. (2017) and Price et al. (2020), which contend

with much larger data volumes. Specifically, our search
provides roughly uniform detection sensitivity over the entire
range of frequency drift rates (±8.86 Hzs−1), whereas the BL
searches suffer a substantial loss in sensitivity due to the
spreading of signal power across up to 13–26 frequency
resolution cells. In addition, we cover a range of frequency drift
rates that is 2–4 times wider than the BL searches with a time
resolution that is 51 times better.
Our search algorithms are distinct from the BL algorithms in

that they alleviate the necessity of discarding approximately
kilohertz-wide regions of frequency space around every detected
signal. We abandoned this practice in previous work (Pinchuk
et al. 2019). In this work, we further refine our algorithm by
implementing a candidate signal detection procedure that relies
on the concept of prominence and removing the requirement to
compute the bandwidth of candidate signals. Our new approach,
combined with better end-to-end sensitivity and drift rate
coverage, enables a hit rate density or signal detection count
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per unit bandwidth per unit integration time that is ∼200 times
larger than that of the BL search described by Price et al. (2020).

A key measure of the robustness and efficiency of a data
processing pipeline is provided by the technique of signal
injection and recovery (e.g., Christiansen et al. 2013), whereby
artificial signals are injected into the raw data and the fraction
of signals recovered by the pipeline is quantified. Despite the
importance of this metric, we are not aware of an existing tool
to quantify the recovery rates of data processing pipelines in
radio technosignature searches. We make a first step toward the
implementation of this tool and show that our current pipeline
detects 93% of the injected signals over the usable frequency
range of the receiver and 98% if we exclude regions with dense
radio frequency interference (RFI). In addition, our pipeline
correctly flagged 99.73% of the detected signals as techno-
signature candidates. Although our current implementation
requires additional work to fully capture the end-to-end
pipeline efficiency, it can already illuminate imperfections in
our and other groups’ pipelines and be used to calibrate claims
about the prevalence of other civilizations (e.g., Enriquez
et al. 2017).

The article is organized as follows. Our data acquisition and
analysis techniques are presented in Sections 2 and 3,
respectively. Our preliminary signal injection and recovery
analysis is described in Section 4. The main results of our search
are outlined in Section 5. In Section 6, we describe certain
advantages of our search, including dechirping efficiency, drift
rate coverage, data archival practices, candidate detection
algorithm, and hit rate density. We also discuss limits on the
prevalence of other civilizations, search metrics such as the
Drake figure of merit (DFM), and reanalysis of previous data
with our latest algorithms. We close with our conclusions in
Section 7.

2. Data Acquisition and Preprocessing

Our data acquisition techniques are generally similar to those
used by Margot et al. (2018) and Pinchuk et al. (2019). Here we
give a brief overview and refer the reader to these other works
for additional details.

2.1. Observations

We selected 31 Sun-like stars (spectral type G, luminosity
class V) with a median galactic latitude of 0°.85 (Table 1)
because their properties are similar to the only star currently
known to harbor a planet with life. We observed these stars with
the GBT during two 2 hr sessions separated by approximately 1
yr. During each observing session, we recorded both linear
polarizations of the L-band receiver with the GUPPI back end in
its baseband recording mode (DuPlain et al. 2008), which yields
2-bit raw voltage data after requantization with an optimal four-
level sampler (Kogan 1998). The center frequency was set to
1.5 GHz, and we sampled 800MHz of bandwidth between 1.1
and 1.9GHz, which GUPPI channelized into 256 channels of
3.125MHz each. We validated the data acquisition and analysis
processes at the beginning of each observing session by injecting
a monochromatic tone near the receiver front end and recovering
it at the expected frequency in the processed data.

We observed all of our targets in pairs in order to facilitate the
detection and removal of signals of terrestrial origin (Section 3.2).
The sources were paired in a way that approximately minimized
telescope time overhead, i.e., the sum of the times spent

repositioning the telescope. Pairings were adjusted to avoid pair
members that were too close to one another on the plane of the
sky with the goal of eliminating any possible ambiguity in the
direction of origin of detected signals. Specifically, we required
angular separations larger than 1◦ between pair members, i.e.,
several times the ∼8 4 beamwidth of the GBT at 1.5 GHz.
Each pair was observed twice in a four-scan sequence: A, B,

A, B. The integration time for each scan was 150s, yielding
a total integration time of 5 minutes per target–1. CoRoT
102810550 and CoRoT 110777727 were each observed for an
additional two scans. With 66 scans of 150 s duration each, our
total integration time amounts to 2.75 hr.

2.2. Sensitivity

Margot et al. (2018) calculated the sensitivity of a search for
narrowband signals performed with the 100 m GBT. Assuming
a System Equivalent Flux Density of 10 Jy, integration time of
150 s, and frequency resolution of 3Hz, they found that
sources with flux densities of 10 Jy can be detected with a
signal-to-noise ratio (S/N) of 10. The results of that calculation
are directly applicable here because our search parameters are
identical to that study. Specifically, our search is sensitive to
transmitters with the effective isotropic radiated power (EIRP)
of the Arecibo planetary radar transmitter (2.2×1013W)
located 420 lt-yr from Earth (Margot et al. 2018, their Figure
5). Transmitters located as far as the most distant source
(CoRoT 102963038; ∼10,407 lt-yr) and with <1000 times the
Arecibo EIRP can also be detected in this search. Although we
selected Sun-like stars as primary targets, our search is
obviously sensitive to other emitters located within the beam
of the telescope. A search of the Gaia DR2 catalog (Gaia
Collaboration 2016, 2018) inspired by Wlodarczyk-Sroka et al.
(2020) reveals that there are 15,031 known stars with measured
parallaxes within the half-power beamwidths associated with
our 31 primary sources. The median and mean distances to
these sources are 2088 and 7197 lt-yr, respectively.

2.3. Computation of Power Spectra

After unpacking the digitized raw voltages from 2-bit to
4-byte floating point values, we computed consecutive power
spectra with 220 point Fourier transforms, yielding a frequency
resolution of Δf=2.98 Hz. We chose this frequency resolu-
tion because it is small enough to provide unambiguous
detections of narrowband (<10 Hz) technosignatures and large
enough to examine Doppler frequency drift rates of up to
nearly ±10 Hz s−1 (Section 2.4). We processed all channels
within the operating range of the GBT L-band receiver
(1.15–1.73 GHz), excluding channels that overlap the fre-
quency range (1200–1341.2MHz) of a notch filter designed to
mitigate RFI from a nearby aircraft detection radar, for a total
processed bandwidth of 438.8 MHz. Although Enriquez et al.
(2017) and Price et al. (2020) used the L-band receiver over a
larger frequency range (1.1–1.9 GHz), we used a narrower
range because we observed serious degradation of the bandpass
response beyond the nominal operating range of the receiver.
In order to correct for the bandpass response of GUPPI’s 256

channels, we fit a 16-degree Chebyshev polynomial to the
median bandpass response of a subset of the processed
channels that did not include strong RFI and that were not
close to the cutoff frequencies of filters located upstream of the
GUPPI back end. After applying the bandpass correction to all
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channels, we stored the consecutive power spectra as rows in
time–frequency arrays (aka time–frequency diagrams, spectro-
grams, spectral waterfalls, waterfall plots, or dynamic spectra)
and normalized the power to zero mean and unit standard
deviation of the noise power. The normalized power values
reflect the S/N at each time and frequency bin.

2.4. Doppler Dechirping

Due to the orbital and rotational motions of both the emitter and
the receiver, we expect extraterrestrial technosignatures to drift in
frequency space (e.g., Siemion et al. 2013; Margot et al. 2018;
Pinchuk et al. 2019). To integrate the signal power over the scan
duration while compensating for Doppler drifts in signal
frequency, we used incoherent sums of power spectra, where
each individual spectrum was shifted in frequency space by a
judicious amount prior to summation. This technique is known as
incoherent dechirping. Coherent dechirping algorithms exist
(Korpela 2012) but are computationally expensive and sel-
dom used.

Because the Doppler drift rates due to the emitters are unknown,
we examined 1023 linearly spaced drift rates in increments of

D =f 0.0173 Hzs−1 over the range ±8.86Hzs−1. To accom-
plish this task, we used a computationally advantageous tree
algorithm (Taylor 1974; Siemion et al. 2013), which operates on
the dynamic spectra and yields time integrations of the consecutive
power spectra after correcting approximately for each trial Doppler
drift rate. The algorithm requires input spectra with a number of
rows equal to a power of two, and we zero-padded the dynamic
spectra with approximately 65 rows to obtain 512 rows. The output
of this algorithm, which was run once for negative drift rates and
once for positive drift rates, is stored in 1023×220 drift-rate-by-
frequency arrays that are ideal for identifying candidate signals,
i.e., radio signals that exceed a certain detection threshold
(Section 3.1). We quantify the sensitivity penalty associated with
the use of the tree algorithm in Section 6.1.

3. Data Analysis

3.1. Candidate Signal Detection

We performed an iterative search for candidate signals on the
drift-rate-by-frequency arrays obtained with the incoherent
dechirping algorithm. Specifically, we identified the signal with

Table 1
Target Host Stars Listed in Order of Observation

Host Star Spectral Type Long. (deg) Lat. (deg) Parallax (mas) Distance (lt-yr) MJD of Scan 1

2018 April 27 20:00–22:00 UT

TYC 1863-858-1 G0V 185.5 −0.21 1.9547±0.036 1669±31 58,235.84503472
TYC 1868-281-1 G2V 185.3 −0.65 3.8622±0.046 844±10 58,235.84737269
HD 249936 G2V 186.2 −0.80 1.9515±0.0412 1671±35 58,235.85430556
TYC 1864-1748-1 G2V 186.6 +0.87 3.0350±0.043 1075±15 58,235.85671296
HIP 28216 G2V 186.9 −0.93 1.2479±0.0909 2614±190 58,235.86393519
HD 252080 G5V 188.1 +1.18 5.7621±0.0511 566±5 58,235.86640046
HD 251551 G2V 186.5 +1.65 4.5105±0.0755 723±12 58,235.87356481
HD 252993 G0V 186.3 +3.13 6.9544±0.0401 469±3 58,235.87591435
TYC 742-1679-1 G5V 195.8 −2.07 8.4009±0.0360 388±2 58,235.88324074
HD 255705 G5V 196.9 −0.04 6.8001±0.0570 480±4 58,235.88562500
HD 254085 G0V 197.5 −1.96 6.5338±0.0967 499±7 58,235.89270833
HD 256380 G8V 198.0 −0.02 2.3058±0.0398 1415±24 58,235.89505787
TYC 739-1501-1 G2V 198.2 −1.60 L L 58,235.90204861
HD 256736 G2V 198.2 +0.22 6.1808±0.0802 528±7 58,235.90435185
TYC 739-1210-1a G5V 198.5 −1.16 9.9809±0.0424 327±1 58,235.91119213

2019 April 26 22:00–24:00 UT

TYC 148-515-1 G5V 212.4 −0.98 5.4947±0.0416 594±4 58,599.92175926
CoRoT 102810550 G2V 211.5 −0.69 1.1333±0.0247 2878±63 58,599.92392361
CoRoT 102830606 G2V 211.4 −0.49 2.2193±0.0357 1470±24 58,599.93030093
TYC 149-362-1 G5V 212.8 +0.69 1.1606±0.0581 2810±141 58,599.93254630
TYC 149-532-1 G2V 213.1 +0.69 7.2260±0.0380 451±2 58,599.93917824
CoRoT 102827664 G4V 211.4 −0.51 2.3394±0.0274 1394±16 58,599.94144676
CoRoT 102936925 G4V 213.6 −0.93 1.0454±0.0223 3120±67 58,599.94826389
CoRoT 110695685 G4V 215.9 −0.83 1.5743±0.0541 2072±71 58,599.95049769
CoRoT 110864307 G2V 216.1 −0.98 1.5985±0.0442 2040±56 58,599.95706019
CoRoT 102951397 G2V 213.6 −0.87 1.1909±0.0249 2739±57 58,599.95931713
CoRoT 102963038 G3V 213.7 −0.85 0.3134±0.0256 10407±850 58,599.96596065
HD 50388 G8V 215.2 −0.75 7.3465±0.0598 444±4 58,599.96820602
TYC 4805-3328-1 G5V 215.4 −0.19 2.5383±0.0455 1285±23 58,599.97480324
CoRoT 110777727 G1V 216.2 −0.90 1.5407±0.0457 2117±63 58,599.97699074
CoRoT 110776963 G4V 215.9 −0.78 2.5207±0.0436 1294±22 58,599.98373843
TYC 4814-248-1 G2V 215.1 +1.32 2.9668±0.0426 1099±16 58,599.98597222

Notes.Successive pairs are separated by a blank line. Spectral types, galactic coordinates, and parallax measurements were obtained from the SIMBAD database
(Wenger et al. 2000). Distances in light years were calculated from the parallax measurements. The Modified Julian Date (MJD) refers to the beginning of the first
scan.
a The source paired with TYC 739-1210-1 was observed only once and not analyzed.
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the highest integrated S/N and stored its characteristics in a
structured query language (SQL) database, then identified and
recorded the signal with the second-highest S/N, and so on.
Redundant detections can occur when signals in the vicinity of
a candidate signal have large integrated power along similar
drift rates. Different data processing pipelines tackle these
redundant detections in different ways. Siemion et al. (2013),
Enriquez et al. (2017), Margot et al. (2018), and Price et al.
(2020) discarded all detections within approximately kilohertz-
wide regions of frequency space around every candidate signal
detection. This method leaves large portions of the observed
frequency space unexamined and biases the results toward
high-S/N signals because signals with lower S/N in their
vicinity are discarded. Importantly, this method complicates
attempts to place upper limits on the abundance of techno-
signature sources because the pipeline eliminates the very
signals it purports to detect (Sections 6.4 and 6.5).

Pinchuk et al. (2019) introduced a novel procedure to
alleviate these shortcomings. In order to avoid redundant
detections, they imposed the restriction that two signals cannot
cross in the time–frequency domain of the scan and discarded
detections only in a small frequency region around every
candidate signal detection. The extent of this region was set
equal to the bandwidth of the candidate signal measured at the
5σ power level, where σ is one standard deviation of the noise.
Unfortunately, this bandwidth calculation can cause complica-
tions in some situations. For example, small noise fluctuations
may result in an unequal number of candidate signals detected
in two scans of a source. In the ∼400 Hz wide region of the
spectrum shown in Figure 1, two signals (±100 Hz) are
detected in the first scan, but only one signal (−100 Hz) is
detected in the second scan. This incompleteness is detrimental
to our direction-of-origin filters (Section 3.2), which rely on
accurate signal detection across all scans. Moreover, discarding
the region corresponding to a bandwidth measured at 5σ

prevents the detection of at least five other signals per scan in
this example (Figure 1).
In this work, we improve on the procedure presented by

Pinchuk et al. (2019) in two important ways. First, we identify
candidate signal detections on the basis of the topography-
inspired concept of prominence. The prominence of a signal is
defined as the vertical distance between the peak and its lowest
contour line, as implemented in the numerical computing
package SciPy (Virtanen et al. 2020). Because our integrated
spectra are one-dimensional, we take the larger of a peak’s two
“bases” as a replacement for the lowest contour line. The high-
frequency (low-frequency) base is defined as the minimum
power in the frequency region starting on the high- (low-)
frequency side of the peak and ending +500 Hz (−500 Hz)
away or at the frequency location of the nearest peak with
higher (lower) frequency and larger power, whichever results in
the smallest frequency interval. While the ±500 Hz limits are
not essential to compute prominences, they do speed up the
calculations. Second, we remove the bandwidth dependence of
Pinchuk et al.ʼs (2019) algorithm. Instead, we apply a local
maximum filter to the drift-rate-by-frequency arrays in order to
remove any points that are not a maximum in their local 3 × 3
neighborhood. We find that this filter in conjunction with the
prominence-based candidate signal detection identifies the
signals of interest without introducing redundant detections.
Signals are considered candidate detections if their promi-

nence meets two criteria: (1) it exceeds 10σ, where σ is one
standard deviation of the noise in the integrated spectrum, and
(2) it exceeds a fraction f of their integrated power. For this
analysis, we settled on f=75%. The second requirement is
necessary because power fluctuations superimposed on strong
broadband signals that approach or exceed the 10σ detection
threshold can yield prominences that exceed 10σ. With this
second requirement, a signal with a prominence of 10σ above a
3.0σ baseline would be marked as a detection, but the same

Figure 1. Comparison of signal detection procedures illustrated on an ∼400 Hz wide region for scans 1 (top) and 2 (bottom) of TYC1863-858-1. (Left) Dynamic
spectra, where pixel intensity represents signal power. (Middle) Integrated power spectra, with blue crosses marking the signals that are detected with the procedure
described by Pinchuk et al. (2019). In the first scan, the strongest signal (+100 Hz) is detected, and the corresponding 5σ bandwidth is shown in red. The second-
strongest signal (−100 Hz) is then detected, and the corresponding 5σ bandwidth is shown in orange. In the second scan, only the strongest signal, which is now at
−100 Hz, is detected. (Right) Integrated power spectra, with blue crosses marking the signals that are detected with the procedure described in this work.
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signal above a 3.5σ baseline would not. Figure 2 describes the
detection space.

As a result of these candidate signal detection improvements,
we now detect 1.23–1.75 and ∼12 times as many signals as we
did with the data processing pipelines of Pinchuk et al. (2019)
and Margot et al. (2018), respectively (Figure 3). We compare
this signal detection performance to that of other searches in
Section 6.4.

Once a signal with frequency f0 and drift rate f0 is detected
with the criteria described in this section, we follow the
procedure outlined by Pinchuk et al. (2019). Specifically, we
eliminate any other candidate signal with frequency f and drift
rate f if the following inequalities hold true at the start of the
scan:

t

t

< < + - >

> > + - <

f f f f f f f

f f f f f f f

for

for , 1
0 0 0 0

0 0 0 0

( )
( ) ( )

   
   

where τ is the scan duration. Our candidate detection procedure
was applied iteratively until all candidate signals with
prominence �10σ were identified. Occasionally, signals with
prominences �10σ but S/N<10 get recorded in the
database. This condition tends to occur primarily in regions
with dense RFI where the baseline subtraction is imperfect. For
this reason, we flagged all signals with S/N<10 and did not
consider them to be valid candidates.

3.2. Doppler and Direction-of-origin Filters

After identifying all candidate signals, we applied a Doppler
filter and improved variants of our direction-of-origin filters
(Margot et al. 2018; Pinchuk et al. 2019) to detect and discard
anthropogenic signals in the data.

We began by applying a Doppler filter, which is designed to
remove all signals with zero Doppler drift rate, defined here as
signals that drift less than one frequency resolution cell
(Δf=2.98Hz) over the duration of a scan (τ=150 s). The
signals removed by this filter are of no interest to us because
the corresponding emitters exhibit no line-of-sight acceleration
with respect to the receiver, suggesting that they are terrestrial
in nature.

Next, we applied two direction-of-origin filters, which are
designed to remove any signal that is either not persistent (i.e.,

not detected in both scans of its source) or detected in multiple
directions on the sky (i.e., also detected in scans corresponding
to other sources). Because the largest possible side-lobe gain is
approximately −30 dB compared to the main-lobe gain, signals
detected in multiple directions on the sky are almost certainly
detected through antenna side lobes. The second filter is highly
effective at removing such signals.
As explained by Pinchuk et al. (2019), the direction-of-origin

filters compare signals from different scans and flag them
according to the observed relationships. For example, if a
signal from a scan of source A is paired with a signal from a
scan of source B, then both signals are removed because they
are detected in multiple directions on the sky. In our previous
implementation of these filters, two signals were considered a
pair if their drift rates were similar and their frequencies at the
beginning of each scan were within a predetermined tolerance
of a straight line with a slope corresponding to the drift rate.
With this definition, it was possible for multiple signals in one
scan to be paired with a single signal from a different scan,
which is undesirable. For example, a valid technosignature
candidate from one of the scans of source A could be labeled as
RFI because it was paired with a signal from one of the scans of
source B, even if the signal in the scan of source B was already
paired with a different (RFI) signal from the scan of source A.
We have redesigned our filter implementation to keep a

record of all signals that are paired during filter execution. We
use this record to impose the restriction that each signal is
allowed to pair with only one other signal in each scan.
Additionally, we implemented an improved pairing procedure
that is loosely based on the Gale–Shapley algorithm (Gale &
Shapley 1962) designed to solve the stable matching problem.
Our improved procedure operates as follows. We define the
propagated frequency difference ΔF( fi,fj) of two signals from
different scans to be

D = - + DF f f f f f t, , 2i j i j ij ij( ) ∣( ) ∣ ( )

where fi and fj are the start frequencies of the two signals,
= +f f f 2ij i j( )   is the average of the two signal drift rates,

and Δtij=tj−ti is the time difference between the two scans.
Our updated algorithm iterates over all remaining unpaired
candidate signals and updates the pairings until ΔF( fi,fj) is

Figure 2. Illustration of detection criteria. Signals above the dashed black line
line are marked as detections by our pipeline.

Figure 3. Detection counts obtained with the algorithms presented by Margot
et al. (2018), Pinchuk et al. (2019), and this work. Our current pipeline detects
1.23–1.75 as many signals as Pinchuk et al.ʼs (2019) pipeline and ∼12 times as
many signals as Margot et al.ʼs (2018) pipeline.
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minimized for all signal pairs. In rare cases, when the minimum
value of ΔF( fi,fj) is not unique, multiple pairings are allowed,
but no inference about the anthropogenic nature of the signals
is made on the basis of these pairings alone.

To ensure that paired signals likely originated from the same
emitter, we impose two additional requirements on all signal
pairs. First, we require that

- + - +   f f f f f for , 3ij j ij ji i ji, , , , ( )

where = +  D D  Df f f f t fij i i ij, ( )  represent the propa-

gated frequency bounds and Df and Δf are the drift rate and
frequency resolution, given by 0.0173 Hzs−1 and 2.98 Hz,
respectively. This condition places an upper limit on ΔF( fi,fj),
and we reject signal pairs whose propagated frequency
differences exceed this bound. Second, we require that

- Df f f2 , 4i j∣ ∣ ( )  

and we reject signal pairs that do not satisfy this criterion. In
tandem, these requirements reduce the possibility of pairing
two unrelated signals.

To determine if a signal is persistent (first filter), we apply
the pairing procedure to candidate signals detected in both
scans of a source. Those signals left without a partner are
deemed to originate from transient sources and are labeled as
RFI. To determine whether a signal is detected in multiple
directions of the sky (second filter), we apply the pairing
procedure to signals from scans of different sources. In this
case, all resulting pairs are attributed to RFI and discarded.
Candidate signals remaining after the application of these
procedures are marked for further inspection.

3.3. Frequency Filters

A majority of the candidate signals detected in our search are
found in the operating bands of known interferers. Table 2
describes the frequency ranges and signal counts associated
with the most prominent anthropogenic RFI detected in our
data. Candidate signals detected within these frequency regions
(except the Air Route Surveillance Radars (ARSR) products
region) were removed from consideration because of their
likely anthropogenic nature. The combined 2017 and 2018
signal detection counts in the excluded RFI regions (156,327
MHz−1) are considerably higher than outside of these regions
(20,654 MHz−1) or in the 1400–1427MHz radio astronomy
protected band (6949 MHz−1). The protected band is
regrettably polluted, possibly as a result of intermodulation
products generated at the telescope (Margot et al. 2018).

The useful bandwidth of our observations Δftot=309.3MHz
is computed by taking the operational bandwidth of the GBT L-
band receiver (580MHz) and subtracting the bandwidth of the
GBT notch filter (141.2MHz) and the total bandwidth discarded
due to known interferers (Table 2; 129.5MHz).

4. Preliminary Signal Injection and Recovery Analysis

A signal injection and recovery analysis consists of injecting
artificial signals into the raw data and quantifying the fraction
of signals that are properly recovered by the pipeline (e.g.,
Christiansen et al. 2013). Although a rigorous injection analysis
is beyond the scope of this paper, we performed a preliminary
examination by injecting narrowband (2.98 Hz) signals into the
dynamic spectra before applying the incoherent dechirping
(Section 2.4), candidate detection (Section 3.1), and Doppler
and direction-of-origin filtering (Section 3.2) procedures.

4.1. Generation and Injection of Artificial Signals

We selected 10,000 starting frequencies from a uniform
distribution over the operating region of the GBT L-band
receiver (1.15–1.73 GHz), excluding the frequency region of
the GBT notch filter (1.2–1.3412 GHz). For each starting
frequency, we also randomly selected a frequency drift rate
from the discrete set ´ D Î -  k f k k: , 510 510{ } ,
withD =f 0.0173 Hzs−1. Each signal was randomly assigned
to one of the sources and injected into the first scan of this
source. A corresponding partner signal was injected into the
second scan of this source. The starting frequency of the
partner signal was obtained by linearly extrapolating the
frequency of the signal in the first scan, i.e., by adding the
product of the artificial drift rate and the known time difference
between the two scans. The drift rate of the partner signal was
set equal to that of the original signal plus an increment
randomly chosen from the set -D Df f, 0,{ }  .
We injected half of the signals at our detection threshold (10σ) to

test the limits of our pipeline’s detection capabilities. The remaining
signals were injected at an S/N of 20 to test our sensitivity to
stronger signals. A total of 20,000 signals were injected into the
2018 April 27 data. A full list of the injected signal properties is
available as supplemental online material. Two examples of
injected signals are shown in Figure 4 and listed in Table 3.

4.2. Recovery and Classification of Injected Signals

After injecting the signals into the dynamic spectra, we
applied our candidate detection procedure (Section 3.1) and
stored the output in an SQL database. Signals were considered
properly recovered if their properties matched those of the

Table 2
Definitions of Operating Regions of Known Anthropogenic Interferers and Associated Signal Counts

Frequency Region (MHz) Total Detection Count % of Total Detections Postfilter Count Identification

1155.99–1196.91 11,937,074 44.82% 15,034 GPS L5
1192.02–1212.48 135,769 0.51% 276 GLONASS L3
1422.32–1429.99 190,530 0.72% 2945 ARSR products
1525–1559 8,258,612 31.01% 341 Satellite downlinks
1554.96–1595.88 5,016,951 18.84% 19,621 GPS L1
1592.95–1610.48 933,813 3.51% 3569 GLONASS L1

Note.The column labeled “Postfilter Count” lists the number of signals remaining after application of our Doppler and direction-of-origin filters. The time–frequency
structure of the RFI labeled as “ARSR products” is similar to that described by Siemion et al. (2013), Margot et al. (2018), and Pinchuk et al. (2019). These products
are likely intermodulation products of ARSR.
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injected signals within ±2 Hz in frequency, Df in drift rate,
and ±0.1 in S/N. We found that our procedure recovered
18,528 (92.64%) of the injected signals. Outside of the regions
with dense RFI described in Table 2, our pipeline performs
better, with a recovery rate of 97.66%. We observe no
significant difference in the recovery rate as a function of drift
rate or scan number (Figure 5), but we do notice an ∼3%
increase in the recovery rate for signals with larger S/N.

We found that most of the signals missed by our pipeline
were injected in regions of known RFI (Figure 5). This pattern
is a consequence of two known limitations of our candidate
detection procedure. First, our algorithms only detect the signal
with the highest S/N when two signals intersect in time–
frequency space (Pinchuk et al. 2019). Second, signals with a
low prominence superimposed on an elevated noise baseline
are discarded (Section 3.1). High-density RFI regions such as

Figure 4. (Top) Time–frequency diagram before signal injection. (Bottom) Time–frequency diagram after signal injection. The injected signal S/N was increased
twentyfold to facilitate visualization. The bottom left panel shows a signal that was successfully recovered by our data processing pipeline. The injected signal in the
bottom right panel crosses a stronger RFI signal and was missed by our detection algorithm.

Table 3
Properties of Artificial Signals Used for the Signal Injection and Recovery Analysis

Name Scan Freq. (Hz) df/dt (Hz s−1) S/N Detected DOO_CORRECT

TYC 1868-281-1 1 1708496788.1 2.029626 10 Y Y
HD 249936 1 1397719731.9 −5.221517 20 N N/A

Note.Columns show source name, scan number, frequency of injection at the start of the scan, frequency drift rate, S/N, a Boolean indicating whether the signal was
recovered by the pipeline, and a Boolean indicating whether the direction-of-origin filter made the correct assignment.

(This table is available in its entirety in machine-readable form.)

7

The Astronomical Journal, 161:55 (15pp), 2021 February Margot et al.



the ones listed in Table 2 are conducive to both of these
conditions, thereby reducing the recovery rate. A cursory
analysis suggests that ∼70%–80% of the nondetections are due
to the intersecting condition.

In order to quantify the performance of our Doppler and
direction-of-origin filters (Section 3.2), we applied our filters to
the entire set of detected signals, including the detections
resulting from injected signals. To distinguish the performance
of these filters from that of our detection algorithm, we
removed 414 of the injected signals that were detected in only
one scan of a source. Furthermore, we removed 21 signals that
were injected with a Doppler drift rate of zero (i.e., stationary
with respect to the observer). Of the remaining 18,093 injected
signals, 18,044 (99.73%) were flagged as promising techno-
signature candidates by our Doppler and direction-of-origin
filters.

4.3. Performance of Data Processing Pipeline

The preliminary injection and recovery analysis described in
this section identified some important limitations of our radio
technosignature detection pipeline. Our detection algorithm,
which is an improvement over those of Margot et al. (2018)
and Pinchuk et al. (2019; Figure 3) and outperforms those of
Enriquez et al. (2017) and Price et al. (2020; Section 6.4),
experiences degraded performance in regions with dense RFI.
In these regions, it is more likely for a technosignature
candidate to intersect a strong RFI signal (Figure 4), thereby
escaping detection by our pipeline. This limitation could be
overcome by using the recorded drift rates and starting
frequencies of two signals within a scan to determine whether
the signals are predicted to intersect each other in the other scan
of the source. If an intersection condition were detected, the
known signal could be blanked or replaced with noise, and a
new detection procedure could be run to identify previously
undetected signals. In the presence of strong RFI, a fraction of
the injected signals escape detection because their prominence
is below our detection threshold (i.e., prominence <f×
integrated power, with f=75%). In some situations, a valid
technosignature could also be removed if it were detected in a
frequency region corresponding to a broadband signal. It may
be possible to overcome this limitation in the future by

including a comparison of the properties of the narrowband
signal (e.g., drift rate, modulation, etc.) to those of the
underlying broadband signal.
Our improved Doppler and direction-of-origin filters per-

formed exceptionally well, only mislabeling 49 of the 18,093
injected signals. The signals that were incorrectly flagged were
paired with an RFI signal of similar drift rate in a scan of a
different source. This issue can be mitigated by expanding the
signal-matching criteria to include signal properties other than
starting frequency and drift rate, such as bandwidth or gain
ratio.
The results presented in this section provide important

insights into the detection capabilities of our current data
processing pipeline. In particular, they demonstrate that our
pipeline still misses some of the narrowband signals that it is
designed to detect. These results are also useful to identify
specific areas in need of improvement.

4.4. Limitations of Current Signal Injection and Recovery
Analysis

The analysis presented in this section is preliminary because
it injects signals into the dynamic spectra and not the raw data.
Therefore, the current implementation does not consider certain
data processing steps, such as correcting for the bandpass
channel response (Section 2.3), calculating the noise statistics
and normalizing the power spectra to zero mean and unit
variance, or applying the incoherent dechirping procedure
(Section 2.4).
In future work, we will implement the ability to inject signals

into the raw data. This improved implementation will allow us
to quantify the detection performance of the entire pipeline. We
anticipate that it will also be helpful in revealing additional
areas for improvement.

5. Results

We applied the methods described in Section 3 to the data
described in Section 2.1. We detected a total of 26,631,913
candidate signals over both 2018 and 2019 observation epochs.
We used the total integration time of 2.75 hr and processed
bandwidth of 438.8 MHz to compute a signal detection count

Figure 5. (Left) Frequency distribution of injected and recovered signals. The number of signals recovered within known RFI regions (such as GPS or GLONASS) is
substantially lower than in other regions. (Top right) Drift rate distribution of injected and recovered signals. (Bottom right) Signal recovery counts as a function of
S/N and scan number. We observe no significant difference in the recovery rate as a function of drift rate or scan number, but we do notice an ∼3% increase in the
recovery rate of signals with larger S/N.
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per unit bandwidth per unit integration time. In BL parlance,
our detections are referred to as “hits” (Enriquez et al. 2017;
Price et al. 2020), and the hit rate density of this search
is 2.2×10−2 hits hr–1 Hz–1. In comparison, the L-band
component of Price et al.ʼs (2020) search with the same
telescope and S/N threshold resulted in 37.14 million hits in
506.5 hr over a useful bandwidth of 660MHz, or a hit rate
density of 1.1×10−4 hits hr–1 Hz–1, 200 times smaller than
ours. We discuss possible reasons for this large differential in
Section 6.4.

A complete table of the signal properties of the detected
candidates is available in Dryad doi:10.5068/D1937J. Our
Doppler and direction-of-origin filters flagged 26,588,893
(99.84%) signals as anthropogenic RFI. A majority of the
remaining 43,020 signals were detected within the operating
regions of known interferers (Table 2). Candidate signals
remaining within these frequency regions were attributed to
RFI and removed from consideration.

The remaining 4539 signals were deemed the most
promising technosignature candidates. Visual inspection of all
of these candidates revealed that they are attributable to RFI.
Figure 6 shows an example of a promising signal that was
ultimately attributed to RFI.

The vast majority of the most promising candidates were
eliminated because they were detected in multiple directions on
the sky. These signals escaped automatic RFI classification by
our filters for one or more of the following reasons, which are
generally similar to the “categories” described by Pinchuk et al.
(2019, Section 4).

1. The S/N values of corresponding signals in scans of
other sources were below the detection threshold of 10.
This difficulty could perhaps be circumvented in the
future by conducting an additional search for lower-S/N
signals at nearby frequencies.

2. The drift rate of the signal differed from those of
corresponding signals in scans of other sources by more
than our allowed tolerance (D = f 0.0173 Hzs−1).

3. The signal was not detected in scans of other sources
because it intersected another signal of a higher S/N.

4. The signal bandwidth exceeded 10 Hz, making it difficult
to accurately determine a drift rate and therefore link the
signal with corresponding signals in scans of other
sources.

All of these difficulties could likely be overcome by a
direction-of-origin filter that examines the time–frequency data
directly instead of relying on estimated signal properties, such
as starting frequency and drift rate. We are in the process of
implementing machine-learning tools for this purpose.
Because automatic classification and visual inspection

attributed all of our candidate signals to RFI, we did not detect
a technosignature in this sample. We are preserving the raw
data in order to enable reprocessing of the data with improved
algorithms in the future, including searches for additional types
of technosignatures.

6. Discussion

6.1. Dechirping Efficiency

Over sufficiently short (∼5 minutes) scan durations,
monochromatic signals emitted on extraterrestrial platforms
are well approximated by linear chirp waveforms ( =f t( )

+ -f t f t t0 0( ) ( ) ). Most radio technosignature detection
algorithms rely on incoherent dechirping, i.e., incoherent sums
of power spectra, to integrate the signal power over the scan
duration (Section 2.4). In the context of incoherent sums, the
magnitude of the maximum drift rate that can be considered
without loss in sensitivity is given by

=
D
D

f
f

T
, 5max ( )

where Δf is the adopted spectral resolution and ΔT is the
accumulation time corresponding to one row in the dynamic
spectra. If the drift rate of a signal exceeds this maximum drift
rate ( >f fmax

  ), the signal frequency drift exceeds Δf during
ΔT, and power is smeared over multiple frequency channels,
resulting in reduced sensitivity.
In this work (Δf=2.98 Hz; ΔT=1/Δf=0.34 s), the

maximum sensitivity can be obtained up to frequency drift rates

Figure 6. Dynamic spectra (top) and integrated power spectra (bottom) of a final candidate signal that appears in scans 1 (left) and 2 (right) of HD 252993. Although
this signal exhibits many of the desirable properties of a technosignature (e.g., narrowband, nonzero Doppler drift rate, persistence), it was ultimately rejected because
it was visually confirmed to appear in multiple directions on the sky.
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of =f 8.88max, UCLA
 Hzs−1. The BL investigators Enriquez

et al. (2017) and Price et al. (2020) used Δf=2.79 Hz and
ΔT=51/Δf=18.25 s, which yields =f 0.15max,BL

 Hzs−1.
However, these authors conducted searches for signals with
drift rates larger than 0.15Hzs−1, resulting in reduced
sensitivity for >90% of the drift rates that they considered.
For instance, at the largest drift rate considered by Price et al.
(2020), the frequency drifts by 4 Hzs−1 × 18.25 s=73 Hz
(26 channels) during ΔT, and only ∼4% of the signal power is
recovered in each frequency channel. We express this loss of
signal power with a detection efficiency in the range 0%–100%
and refer to it as a dechirping efficiency.

To confirm the performance of the data processing pipelines,
we conducted numerical experiments11 with both our algo-
rithms and BL’s turboSETI package (Enriquez et al. 2017). For
the purpose of these simulations, we created noise-free,
constant-power dynamic spectra of linear chirp waveforms
with the frequency and time resolutions appropriate for the
UCLA and BL searches. By considering only integral pixel
locations, we simulated frequency drift rates that are exact
multiples of the elemental drift rates considered by our
respective tree algorithms (0.0173 Hzs−1 for the UCLA
searches, 0.0096 Hzs−1 for the BL searches). We ran the
respective tree algorithms on the simulated spectra and
recorded the power recovered at each drift rate as a function
of total signal power (Figure 7, left). The experiments show
that, at nominal frequency resolutions of ∼3 Hz, dechirping
efficiencies of 100% are possible in our and other searches with
f fmax

  , whereas dechirping efficiencies rapidly degrade to
values as low as 4% in the BL searches with >f fmax,BL

 
In this experiment, a perfect algorithm would recover 100%

of the signal power, as long as f fmax
  . The tree algorithm

(Section 2.4) is not perfect in that it reuses precomputed sums
to achieve N Nlog computational cost. As a result, the tree
algorithm shifts every spectrum by an amount that is not

always optimal. In other words, it is unable to perfectly dechirp
most linear chirp waveforms. In our simulations of the UCLA
pipeline, we do observe 100% of the power recovered for
several drift rates (Figure 7, left). On average, the pipeline
recovers 72.4%±6.8% of the signal power. In the worst-case
scenario, the fraction of power recovered is 60%. The tree
algorithm’s dechirped waveform of this worst-case scenario
reveals that 60% of the frequency bins are shifted to the correct
locations and 40% are shifted to incorrect locations (Figure 7,
right). We quantified the dechirping efficiencies associated with
the use of the tree algorithm for a variety of array dimensions
(Table 4).
We computed a rough estimate of the mean dechirping

efficiency in the search of Price et al. (2020) for the nominal
frequency resolution of ∼3 Hz and a uniform distribution of
candidate signals as a function of drift rate. We assumed a
generous 100% efficiency between 0 and 0.15 Hzs−1 and the
1/x trend observed in Figure 7 between 0.15 and 4 Hzs−1. We
found a mean efficiency of 16.5%. A weighted mean of the
efficiency based on the exact distribution of signals as a

Figure 7. (Left) Dechirping efficiencies of the UCLA (blue) and BL (red) data processing pipelines as a function of Doppler frequency drift rate at nominal frequency
resolutions of ∼3 Hz. Our choices of data taking and processing parameters result in a fairly uniform efficiency (72.4% ± 6.8%) across the full range of drift rates
considered, with values below 100% due to imperfections of the tree algorithm (see text). The BL choices result in a considerably reduced detection efficiency beyond

=f 0.15max,BL
 Hzs−1 (dashed vertical line), with values as low as 4% due to smearing of the signal power across multiple frequency bins. The performance at
frequencies beyond fmax

 is well approximated by a 1/x function (purple line), consistent with the inverse bandwidth dependence of the amplitude of a linear chirp
power spectrum. (Right) Dynamic spectrum of a linear chirp waveform dechirped imperfectly by the tree algorithm. In this worst-case scenario for f fmax

  , only
60% of the spectra are shifted by the correct amounts, and only 60% of the power is recovered in the appropriate frequency channel. Only the first 100 rows (∼30 s)
are shown.

Table 4
Dechirping Efficiencies Resulting from Incoherent Dechirping of Power
Spectra with a Computationally Advantageous but Approximate Tree

Algorithm (Section 2.4)

Rows Min. (%) Max. (%) Mean (%) Median (%) STD (%)

4 100.00 100.00 100.00 100.00 0.00
8 75.00 100.00 93.75 100.00 11.57
16 75.00 100.00 90.62 93.75 10.70
32 68.75 100.00 85.16 81.25 11.20
64 68.75 100.00 81.64 78.12 9.83
128 64.06 100.00 77.93 75.00 8.88
256 64.06 100.00 75.17 73.44 7.68
512 60.16 100.00 72.42 71.09 6.84
1024 60.16 100.00 70.08 69.14 6.10
2048 56.84 100.00 67.92 66.60 5.53
4096 56.84 100.00 66.01 64.94 5.06

11 Our software is available at https://github.com/UCLA-SETI-Group/
dechirping_efficiency.
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function of drift rate would provide a more accurate and likely
larger value.

We describe two alternate, partial solutions to the loss of
sensitivity sustained during incoherent dechirping. The first is
to reduce the frequency resolution of the dynamic spectra,
thereby increasing the range of drift rates that can be explored
without spreading power across multiple channels (e.g.,
Siemion et al. 2013). However, this solution still results in a
loss of sensitivity. For narrowband signals, each doubling of
the frequency resolution results in a 2 decrease in sensitivity.
To reach the maximum drift rates of ±4Hzs−1 considered by
Price et al. (2020), one would have to apply four to five
doublings, resulting in frequency resolutions of 45–90Hz and
sensitivity to narrowband signals of 18%–25% of the nominal
value. Another, related approach would be to use a drift-rate-
dependent boxcar average of the integrated spectra to recover
the power that has been spread over multiple channels, e.g., by
averaging 26 channels at the maximum drift rates of ±4Hzs−1

considered by Price et al. (2020). Doing so would degrade the
frequency resolution to values up to 73Hz and the sensitivity
to narrowband signals to 20% of the nominal value.

6.2. Extreme Drift Rates

In a recent study12 of the expected drift rates of a large class
of bodies, including exoplanets with highly eccentric orbits and
small semimajor axes, Sheikh et al. (2019) recommended
searching drift rates as large as =f f 200obs

 nHz. At the
center frequency of our observations (1.5 GHz), this corre-
sponds to a drift rate of 300Hzs−1. Our data archival policy
(Section 6.3) would enable reprocessing of the data with
parameters that are more conducive to large drift rates. For
example, we could reprocess our data with Fourier transforms
of length 217. This choice would increase our frequency
resolution eightfold to 24 Hz and allow us to search for drift
rates up to ∼570Hzs−1 without incurring any sensitivity loss
due to signal smearing over multiple frequency channels. In
contrast, BL archive products include dynamic spectra but do
not include most of the raw voltage data (Enriquez et al. 2017;
Lebofsky et al. 2019; Price et al. 2020), making it impractical
to conduct a search with archival products at drift rates larger
than ∼1Hzs−1 with adequate sensitivity (Figure 7).

6.3. Data Requantization and Preservation

Our choice of data recording parameters is largely driven by
our dedication to preserve the raw voltage data recorded during
our observations. We prefer to archive the raw data as opposed
to derived data products such as dynamic power spectra, for
four reasons. First, the raw 2-bit data require less storage space
than the 32-bit dynamic spectra. Second, the dynamic power
spectra can be easily regenerated from the raw data, but the
reverse is not true, because phase information is lost in the
process of computing power spectra. Third, there are large
penalties associated with preserving incoherent averages of
individual power spectra. Enriquez et al. (2017) and Price et al.
(2020) averaged 51 consecutive spectra to keep the archival
volume manageable, which degrades the sensitivity of the
search by factors of up to ∼25 (Section 6.1) and the time
resolution by a factor of 51 (Figure 8). As a result, the BL

dynamic spectra would not be useful in confirming or
interpreting a signal with 1 Hz modulation, for instance.
Fourth, the only way to preserve the ability to conduct novel
or improved data analysis with maximum sensitivity and
resolution is to preserve the raw data. However, there are
penalties associated with storing raw data in 2-bit format as
opposed to 8-bit format (e.g., Price et al. 2020).
For this work and previous analyses (Margot et al. 2018;

Pinchuk et al. 2019), we selected a data taking mode that yields
2-bit raw voltage data after requantization with an optimal four-
level sampler (Kogan 1998). The quantization efficiency,
which is the ratio of signal power that is observed with the
optimal four-level sampler to the power that would be obtained
with no quantization loss, is 0.8825. Price et al. (2020) noted
that a consequence of this requantization is that the S/N
threshold used in this work (10) would need to be lowered by
approximately 12% to detect the same number of candidate
signals as 8-bit quantized data. While we agree with this
statement, the S/N threshold of radio technosignature searches
is somewhat arbitrary, and our choice compares favorably to
that of other surveys (Table 5). Should the need ever arise to
detect weaker signals, we would simply reanalyze our data with
a lower S/N threshold. In addition, the sensitivity enabled by
our decision to minimize the accumulation time when
computing dynamic spectra (Section 6.1) offsets the losses
due to quantization efficiency compared to pipelines with
longer accumulation times. Specifically, if we apply the 0.8825
quantization efficiency to the results illustrated in Figure 7, we
find that our overall sensitivity surpasses BL’s sensitivity for
any drift rate larger than 0.153Hzs−1 and surpasses it by a
factor of at least 5 for any drift rate larger than 1.11Hzs−1.

6.4. Candidate Signal Detection Count

Our results indicate a hit rate density of 2.2×10−2 hits hr–1

Hz–1, whereas Price et al. (2020) obtained a considerably lower
value of 1.1×10−4 hits hr–1 Hz–1 with the same telescope and
S/N threshold (Section 5). We investigate possible causes for
this factor of ∼200 difference. First, our observing cadence
involves two scans of 150 s each per source, whereas Price
et al. (2020) used three scans of 300 s each per source. The
difference in integration time could perhaps be invoked to
explain a factor of up to 3 difference in hit rate density,
although a larger number of signals ought to be detectable with
BL’s longer scan durations. Second, our processed frequency
range extends over 438.8MHz, whereas Price et al. (2020)
used a superset of that range extending over 660MHz. A
nonuniform distribution of dense RFI across the spectrum
could perhaps be invoked to explain a factor of up to ∼2
difference in hit rate density. Third, we examine a range of drift
rates that is twice as large as the range used by Price et al.
(2020), which may explain a factor of ∼2 difference in hit rate
density if the distribution of hits as a function of drift rate is
roughly uniform. These small factors cannot explain the 2
orders of magnitude difference in hit rate density, which must
be related to more fundamental effects. We surmise that the two
most important factors are the difference in the effective
sensitivities of our searches due to different dechirping
efficiencies (Section 6.1) and the algorithmic difference in the
identification of candidate signals or hits.
As detailed by Pinchuk et al. (2019), the candidate signal

detection procedures used in several previous radio technosigna-
ture searches (e.g., Siemion et al. 2013; Enriquez et al. 2017;

12 Sheikh et al. (2019) incorrectly delineated the search parameters of Enriquez
et al. (2017) in their Figure 1. The maximum frequency excursion considered in
that search is 600 Hz, not 12,000 Hz.
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Margot et al. 2018; Price et al. 2020) unnecessarily remove
kilohertz-wide regions of frequency space around every signal
detection. This practice complicates attempts to place upper limits
on the existence of technosignatures, because the algorithms
discard many signals that are legitimate technosignature candi-
dates. In addition, this practice leads to slight overestimates of
search metrics, such as the DFM (Pinchuk et al. 2019). Here we
quantify the number of signals that are unnecessarily discarded by
algorithms that remove approximately kilohertz-wide frequency
regions around every detection.

To perform this comparison, we used the database of
signals detected during the 2018 April 27 observations, and
we replicated the procedure described by Enriquez et al.
(2017) and Price et al. (2020). The “blanking” procedure used
by Price et al. (2020) specifies “Only the signal with the
highest S/N within a window ... ±600Hz is recorded as a
hit.” To replicate this step, we sorted the signals detected in
each scan in decreasing order of S/N and iterated over the
sorted lists. At every iteration, we kept the signal with the
largest remaining S/N value and eliminated all other signals
within ±600Hz. The next step described by Price et al.
(2020) combines hits that fall within a certain frequency range
into groups as long as the signal is detected in every scan of
the source. We replicated this step by grouping signals that
were present in both scans of each source according to Price
et al.ʼs (2020) prescription for frequency range. The third step
of the procedure described by Price et al. (2020) reads:
“Additionally, any set of hits for which there is at least one hit

in the OFF observations within ±600Hz of the hit frequency
from the first ON observation would be discarded.” This
elimination seems wasteful because the presence of OFF-scan
signals with drift rates that are unrelated to the ON-scan drift
rate results in elimination. To replicate this step, we removed
all groups of signals for which one or both of the two OFF
scans contained an unrelated signal within ±600Hz of the
detection in the first ON scan. To determine whether the
signals were unrelated, we placed the following condition on
drift rate,

- > Df f f2 , 60∣ ∣ ( )  

where f is the drift rate of the OFF-scan signal, f0 is the drift
rate of the ON-scan signal, and D =f 0.0173 Hzs−1 is the
drift rate resolution. Our direction-of-origin filters (Section 3.2)
also remove signals if they are found in multiple directions on
the sky, but only in conjunction with careful analysis of the
drift rates of both signals. Specifically, our filters only remove
the two signals if their drift rates are within a tolerance of Df2 .
For the purpose of this blanking analysis, we kept signals that
satisfy this criterion because both pipelines remove them
during subsequent filtering. We found that our pipeline
detected 10,113,551 signals, whereas our pipeline with a
blanking algorithm modeled after the descriptions given by
Enriquez et al. (2017) and Price et al. (2020) detected only
1,054,144 signals. In other words, our pipeline detects ∼10
times as many signals as the BL-like pipeline over the same
frequency range, with a corresponding increase in hit rate
density.
To summarize, we found that our algorithmic approach to

signal identification explains the largest fraction of the factor of
∼200 difference in hit rate density between our and the BL
searches, likely followed by our better overall sensitivity for
>90% of the frequency drift rates examined by the BL pipeline
(Section 6.1), likely followed by our shorter integration times
and consideration of a wider range of drift rates. It is also
possible that the limited dynamic range of our 2-bit voltage
data makes our search susceptible to spurious detections at the

Figure 8. Representative dynamic spectra of a signal shown with the nominal time resolution of ∼1/3 Hz=0.33 s (left) and the degraded time resolution resulting
from time-averaging 51 consecutive spectra (right).

Table 5
S/N Thresholds Used in Recent Searches for Radio Technosignatures

Reference S/N

Gray & Mooley (2017) 7
Harp et al. (2016) 9/6.5
UCLA SETI searches 10
Price et al. (2020) 10
Enriquez et al. (2017) 25
Siemion et al. (2013) 25
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harmonics of strong RFI signals (D. Price 2020, personal
communication). We are planning to quantify the importance
of this effect in the future.

The differential in hit rate density has implications for the
validity of existence limit estimates and figure-of-merit
calculations described by Enriquez et al. (2017) and Price
et al. (2020).

6.5. Existence Limits

We describe three issues that affect recent claims about the
prevalence of transmitters in the Galaxy (Enriquez et al. 2017;
Price et al. 2020; Wlodarczyk-Sroka et al. 2020).

First, the range of Doppler drift rates considered in these
searches has been limited (±2 and ±4 Hzs−1), whereas
transmitters may be located in a variety of settings with line-
of-sight accelerations that would only be detectable at larger
drift rates (e.g., Sheikh et al. 2019).

Second, these claims invoke transmitters with certain EIRP
values that are calculated on the basis of the nominal sensitivity
to nondrifting signals. However, the sensitivity to signals
drifting in frequency is demonstrably degraded (Section 6.1)
with the incoherent dechirping method used in these searches.
The published EIRP values could be erroneous by factors of up
to 25 for these searches, depending on the drift rate of the
putative signal.

Third, our preliminary candidate signal injection and
recovery analysis (Section 4) reinforces the concerns voiced
by Margot et al. (2018) and Pinchuk et al. (2019) about
Enriquez et al.ʼs (2017) claims. Pinchuk et al. (2019) argued
that an injection and recovery analysis would demonstrate that
a fraction of detectable and legitimate signals are not identified
by existing pipelines, thereby requiring corrections to the
claims. We have shown that our current pipeline misses ∼7%
of the signals injected into the dynamic spectra (Section 4). We
surmise that the BL pipelines used by Enriquez et al. (2017)
and Price et al. (2020) miss a substantially larger fraction of
signals that they are meant to detect because of reduced
sensitivity (Section 6.1), time resolution (Section 6.3), and
detection counts (Section 6.4) compared to our pipeline.

In light of these issues, published claims about the
prevalence of transmitters in the Galaxy (e.g., Enriquez et al.
2017; Price et al. 2020; Wlodarczyk-Sroka et al. 2020) almost
certainly need revision. As mentioned in Section 4.4, we are
planning improvements to our signal injection and recovery
analysis. Until this refined analysis is complete, we will not be
in a position to make reliable inferences about the prevalence of
radio beacons in the Galaxy.

6.6. Drake Figure of Merit

The DFM (Drake 1984) is a metric that can be used to
compare some of the dimensions of the parameter space
examined by different radio technosignature searches. It is
expressed as

=
D Wf

F
DFM , 7tot

det
3 2

( )

where Δftot is the total bandwidth observed, Ω is the total
angular sky coverage, and Fdet is the minimum detectable flux.
Assuming unit quantization and dechirping efficiencies, our
search with an S/N threshold of 10 is sensitive to sources with
flux densities of 10 Jy and above (Margot et al. 2018). For

consistency with earlier calculations (Enriquez et al. 2017;
Price et al. 2020), we have assumed that the bandwidth of the
transmitted signal is 1 Hz, resulting in a minimum detectable
flux = -F 10det

25 Wm−2. The sky coverage of this search is
Ω=31×0.015deg2=0.465 deg2, i.e., 11ppm of the entire
sky. The useful bandwidth isΔftot=309.3 MHz (Section 3.3).
We used these parameters to calculate the DFM associated with
this search and found DFM=1.11×1032, where we have
used units of GHz m3 W−3/2 for compatibility with Horowitz
& Sagan (1993). We reanalyzed our 2016 and 2017 data sets
(Section 6.8) and recomputed DFM values of 5.00×1031 and
4.71×1031 for these data sets, respectively, with an aggregate
DFM for our 2016–2019 searches of 2.08×1032. However,
we regard these values and all previously published DFM
values with skepticism.
The DFM values published in recent works do not provide

accurate estimates of search volume or performance for a few
reasons. First, the DFM relies on minimum detectable flux, but
authors have ignored factors that can tremendously affect
overall search sensitivity, such as quantization efficiency
(∼88% for 2-bit sampling) or dechirping efficiency (60%–

100% with the tree algorithm and the parameters of this search
and as low as ∼4% in the recent BL search described by Price
et al. 2020). Second, it does not account for the range of drift
rates considered in a search, which is clearly an important
dimension of the search volume. Third, it ignores the quality of
the signal detection algorithms, such that two surveys may have
the same DFM even though their data processing pipelines
detect substantially different numbers of signals (e.g., the
blanking of kilohertz-wide regions of frequency space
described in Section 6.4). For these reasons, we believe that
the DFM values calculated by authors of recent searches,
including our own, are questionable indicators of actual search
volume or performance. Horowitz & Sagan (1993) expressed
additional concerns, stating that the DFM “probably does
justice to none of the searches; it is a measure of the odds of
success, assuming a homogeneous and isotropic distribution of
civilizations transmitting weak signals at random frequencies.”
In Section 6.1, we showed that the dechirping efficiency

degrades rapidly for frequency drift rates larger than fmax


(Figure 7). As a result, the minimum detectable flux for
nondrifting signals, which has been used by Enriquez et al.
(2017) and Price et al. (2020) in their DFM estimates
(Equation (7)), is not representative of the minimum detectable
flux of signals with >90% of the drift rates that they
considered, which can be up to 25 times larger. Given the
presence of this flux to the 3/2 power in the denominator of the
DFM, we believe that the DFMs of these searches have been
inadvertently but considerably overestimated. Other figures of
merit, such as Enriquez et al.ʼs (2017) continuous waveform
transmitter rate figure of merit (CWTFM), are also affected by
this problem.
We can use our estimates of the mean dechirping efficiencies

to quantify plausible errors in DFM estimates. In Section 6.1,
we computed a rough estimate of 16.5% for the mean
efficiency of the BL search conducted by Price et al. (2020),
suggesting that the DFM of their search has been overestimated
by a factor of ∼15. This value may be revised down once a
more accurate estimate of the mean dechirping efficiency
becomes available. For the UCLA searches conducted between
2016 and 2019, the mean dechirping efficiency is 72.4%, and
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the quantization efficiency is 88.25%, resulting in an overall
efficiency of 64% and DFM overestimation by a factor of ∼2.

6.7. Other Estimates of Search Volume

The range of drift rates considered in a search program
obviously affects the probability of success of detecting a
technosignature. For instance, a search restricted to drift rates
smaller than =f 0.15max, BL

 Hzs−1 could fail to detect the
signal from an emitter on an Earth-like planet. The frequency
drift rate dimension of the search volume does not appear to
have been fully appreciated in the literature. It is distinct from
the “modulation” dimension described by Tarter et al. (2010),
who focused on “complex ... broadband signals.” It also
appears to be distinct from the “modulation” dimension of
Wright et al. (2018), who contemplated drift rates on the order
of the “Earth’s barycentric acceleration,” i.e., 0.03Hzs−1 at
the center frequency of our observations. It is also absent from
the CWTFM used by Enriquez et al. (2017), Price et al. (2020),
and Wlodarczyk-Sroka et al. (2020). The development of an
improved figure of merit for radio technosignature searches is
beyond the scope of this work. However, we recommend that
improved figures of merit include the range of line-of-sight
accelerations between emitter and receiver as a dimension of
the search volume, as well as explicit guidelines regarding the
treatment of quantization and dechirping efficiencies.

6.8. Reanalysis of 2016 and 2017 Data

Margot et al. (2018) presented the results of a search for
technosignatures around 14 planetary systems in the Kepler
field conducted on 2016 April 15, 16:00–18:00 UT, with the
GBT. Pinchuk et al. (2019) presented the results of a similar
search conducted on 2017 May 4, 15:00–17:00 UT, that
included 10 planetary systems in the Kepler field but also
included scans of TRAPPIST-1 and LHS 1140.

We reprocessed these data with our updated algorithms and
detected a total of 13,750,469 candidate signals over the 2016
and 2017 epochs of observation. Tables of the signal properties
of the detected candidates are available online for both the 2016
(Margot et al. 2020a) and 2017 (Margot et al. 2020b) data sets.
We found that 13,696,445 (99.61%) signals were automatically
flagged as anthropogenic RFI, and 54,024 signals were labeled
as promising. Candidate signals found within operating regions
of known interferers (Table 2) were attributed to RFI and
removed from consideration. Visual inspection of all of the
remaining 4257 candidate signals revealed that they are
attributable to RFI. With this improved analysis, we confirm
the initial results that no technosignatures were detected in the
data obtained in 2016 (Margot et al. 2018) and 2017 (Pinchuk
et al. 2019).

7. Conclusions

We described the results of a search for technosignatures that
used 4 hr of GBT time in 2018 and 2019. We identified
26,631,913 candidate signals, 99.84% of which were auto-
matically classified as RFI by rejection filters. Of the signals that
remained, 4539 were found outside of known RFI frequency
bands and were visually inspected. All of these were attributable
to RFI, and none were identified as a technosignature.

We presented significant improvements to our signal detection
and direction-of-origin filter algorithms. We tested the signal
recovery of the updated procedures with a preliminary signal

injection and recovery analysis, which showed that our pipeline
detects ∼93% of the injected signals overall. This recovery rate
increases to ∼98% outside of known RFI frequency bands. In
addition, our pipeline correctly identified 99.73% of the artificial
signals as technosignatures. This signal injection and recovery
analysis provides an important tool for quantifying the signal
recovery rate of a radio technosignature data processing pipeline.
Planned improvements to this tool will further illuminate
imperfections in our and other groups’ pipelines and point to
additional areas for improvement.
Our search represents only a modest fraction of the BL

searches described by Enriquez et al. (2017) and Price et al.
(2020) in terms of number of targets and data volume.
However, our search strategy has advantages compared to these
searches in terms of sensitivity (up to 25 times better),
frequency drift rate coverage (2–4 times larger), and signal
detection count per unit bandwidth per unit integration time
(∼200 times larger).
We described the limitations of recent DFM calculations in

assessing the probability of success of different search
programs. These calculations have ignored important factors
such as quantization and dechirping efficiencies. In addition,
the DFM does not account for the range of drift rates
considered in a search or the quality of the signal detection
algorithms. As a result, we suggest that recent DFM
calculations are questionable indicators of actual search volume
or performance. We recommend that improved metrics include
the range of line-of-sight accelerations between emitter and
receiver as a dimension of the search volume, as well as
explicit guidelines regarding the treatment of quantization and
dechirping efficiencies.
Our observations were designed, obtained, and analyzed by

undergraduate and graduate students enrolled in an annual
SETI course offered at UCLA since 2016. The search for
technosignatures can be effectively used to teach skills in radio
astronomy, telecommunications, programming, signal proces-
sing, and statistical analysis. Additional information about the
course is available at https://seti.ucla.edu.

Funding for the UCLA SETI Group was provided by the
Queens Road Foundation, Janet Marott, Michael W. Thacher and
Rhonda L. Rundle, Larry Lesyna, and other donors (https://seti.
ucla.edu). Funding for this search was provided by Michael W.
Thacher and Rhonda L. Rundle, Howard and Astrid Preston, K.
K., Larry Lesyna, Herbert Slavin, Robert Schneider, James Zidell,
Joseph and Jennifer Lazio, and 25 other donors (https://spark.
ucla.edu/project/13255/wall). We are grateful to a reviewer for
useful suggestions. We are grateful to the BL team for stimulating
discussions about dechirping efficiency, data requantization, and
data archival practices. We are grateful for the data processing
pipeline initially developed by the 2016 and 2017 UCLA SETI
classes. We thank Smadar Gilboa, Marek Grzeskowiak, and Max
Kopelevich for providing an excellent computing environment in
the Orville L. Chapman Science Learning Center at UCLA. We
are grateful to Wolfgang Baudler, Paul Demorest, John Ford,
Frank Ghigo, Ron Maddalena, Toney Minter, and Karen O’Neil
for enabling the GBT observations. The Green Bank Observatory
is a facility of the National Science Foundation operated under
cooperative agreement by Associated Universities, Inc. This work
has made use of data from the European Space Agency (ESA)
mission Gaia (https://www.cosmos.esa.int/gaia), processed by
the Gaia Data Processing and Analysis Consortium (DPAC;
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https://www.cosmos.esa.int/web/gaia/dpac/consortium). This
research has made use of the SIMBAD database, operated at
CDS, Strasbourg, France.

Facility: Green Bank Telescope.
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