THE ASTRONOMICAL JOURNAL, 150:114 (10pp), 2015 October

© 2015. The American Astronomical Society. All rights reserved.

doi:10.1088,/0004-6256,/150/4 /114

IMPROVED ALGORITHMS FOR RADAR-BASED RECONSTRUCTION OF ASTEROID SHAPES

ADAM H. GREENBERG AND JEAN-LUC MARGOT
University California, Los Angeles, CA, USA
Received 2015 May 4; accepted 2015 July 30; published 2015 September 14

ABSTRACT

We describe our implementation of a global-parameter optimizer and Square Root Information Filter into the
asteroid-modeling software shape. We compare the performance of our new optimizer with that of the existing
sequential optimizer when operating on various forms of simulated data and actual asteroid radar data. In all cases,
the new implementation performs substantially better than its predecessor: it converges faster, produces shape
models that are more accurate, and solves for spin axis orientations more reliably. We discuss potential future

changes to improve shape’s fitting speed and accuracy.
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1. INTRODUCTION

Earth-based radar is a powerful tool for gathering informa-
tion about bodies in the solar system. Radar observations can
dramatically improve the determination of the physical proper-
ties and orbital elements of small bodies (such as asteroids and
comets). An important development in the past two decades has
been the formulation and implementation of algorithms for
asteroid shape reconstruction based on radar data (Hud-
son 1993; Hudson & Ostro 1994, 1995; Ostro et al. 1995).
This problem is not trivial because it requires the joint
estimation of the spin state and shape of the asteroid. Because
of the nature of radar data, recovery of the spin state depends
on knowledge of the shape and vice versa. Even with perfect
spin state information, certain peculiarities of radar images
(such as the two-to-one or several-to-one mapping between
surface elements on the object and pixels within the radar
image) make recovery of the physical shape challenging
(Ostro 1993). This is a computationally intensive problem,
potentially involving hundreds to thousands of free parameters
and millions of data points.

Despite the computational cost, astronomers are keen on
deriving shape and spin information from asteroid radar
images. The most compelling reason to do so is the fact that
radar is the only Earth-based technique that can produce
detailed three-dimensional information of near-Earth objects.
This is possible because radar instruments achieve spatial
resolutions that dramatically surpass the diffraction limit. In
other words, radar instruments can resolve objects substantially
smaller than the beamwidth of the antenna used to obtain the
images. For example, the Arecibo telescope, the primary
instrument used for the data presented in this paper, has a
beamwidth of ~2 arcmin at the nominal 2380 MHz frequency
of the radar. Yet observers can easily gather shape information
to an accuracy of decameters for objects several millions of
kilometers from Earth, achieving an effective spatial resolution
of ~1 mas.

Radar has other advantages as well. Unlike most observa-
tional techniques inside the solar system, radar does not rely
on any external sources of light, be it reflected sunlight,
transmitted starlight, or thermal emission. This human-
controlled illumination allows for greater flexibility with
respect to the observations. In addition, because of the
wavelengths involved, radar observations can be performed
during the day, further enhancing this flexibility. Radar also has

the ability to probe an object’s sub-surface properties, which
can give important information about the object such as
porosity, surface and sub-surface dielectric constant, and the
presence of near-surface ice.

Asteroid shape data are important for various reasons. For
certain asteroids, reliable determination of an orbital future
cannot be determined without shape and spin information. The
Yarkovsky effect, for example, can change an asteroid’s
semimajor axis at a rate of ~10~* AU My~! for km-sized
objects (Vokrouhlicky et al. 2000; Bottke et al. 2006; Nugent
et al. 2012). This effect occurs because the rotating body
absorbs sunlight and then re-emits that light in a non-sunward
direction, resulting in a gentle perturbation to the asteroid’s
orbit. The Yarkovsky effect is greatly dependent on the shape
of the object, since re-emission of absorbed sunlight is a
surface phenomenon. It is responsible for the largest source of
uncertainty in trajectory predictions for near-Earth asteroids
(NEAs) with sizes under 2km, and it must be taken into
account when evaluating impact probabilities (Giorgini
et al. 2002; Farnocchia et al. 2013; Chesley et al. 2014).

Knowledge of the shape also provides clues about the
formation and interaction history of asteroids. For example,
radar-derived shapes of asteroids have been instrumental in
identifying binary asteroids and contact binaries, which
represent ~16% and ~10% of the population, respectively
(Margot et al. 2002; Benner et al. 2008). They have also
provided strong evidence that NEA binaries form by a spin-up
and mass shedding process (Margot et al. 2002; Ostro
et al. 2006). For single asteroids, knowledge of the morphology
guides interpretation of the collisional history and surface
modification processes.

Shapes also affect spin evolution during two-body interac-
tions (e.g., torques during close planetary encounters) and
orbital evolution of binary NEAs (e.g., tidal, gravitational, and
non-gravitational interactions between components) (e.g.,
Margot et al. 2002; Ostro et al. 2006; Scheeres et al. 2006;
Cuk & Nesvorny 2010; Jacobson et al. 2014; Naidu &
Margot 2015). Finally, shapes are needed when calculating the
gravity environment near asteroids, which is of special
importance for proximity operations (Fujiwara et al. 2006;
Naidu et al. 2013; Nolan et al. 2013; Takahashi &
Scheeres 2014).

The determination of an asteroid’s spin state from radar
data is equally valuable. In contrast to lightcurve period


http://dx.doi.org/10.1088/0004-6256/150/4/114

THE ASTRONOMICAL JOURNAL, 150:114 (10pp), 2015 October

GREENBERG & MARGOT

Figure 1. A time-series of range-Doppler images of the asteroid 2000 ET70 (Naidu et al. 2013), starting in the top left and proceeding to the right. The epochs of
consecutive images are separated by 18 minutes. Distance from the observer increases downwards, and Doppler increases to the right.

determinations, which are neither sidereal nor synodic, the
radar-based measurements yield sidereal periods. These
estimates are needed to test the agreement between physical
theories and observations, e.g., the change in asteroid spin rate
due to sunlight (e.g., Lowry et al. 2007; Taylor et al. 2007) and
subsequent shape evolution (e.g., Fahnestock & Scheeres 2009;
Harris et al. 2009). Proper modeling of the Yarkovsky
perturbations to an asteroid’s heliocentric orbit or to the
evolution of binary orbits (e.g., Margot et al. 2015) also require
knowledge of the spin state. Finally, important insights can be
gained about asteroid physical properties and collisional
evolution from the spin distributions of both regular rotators
and non-principal-axis rotators (e.g., Pravec et al. 2002).

2. CURRENT METHOD

Asteroid shapes and spin states are currently modeled
using the shape software package (Hudson 1993; Magri
et al. 2007). Shape takes a model for the asteroid, which is
based on both shape and spin parameters, as well as scattering
behavior, and projects that model into the same space as that of
the radar observables. This space, called the range-Doppler
space, has dimensions of range and line-of-sight velocity
(Figure 1). Shape can also handle optical lightcurve data when
fitting for asteroid shapes, but we did not use this capability in
this paper.

Shape then compares the mapping of the model into this
space to the radar observables, and makes changes to the model
parameters in an attempt to minimize the sum of squares of
residuals. Shape uses increasing model complexity to build up
a representation for the asteroid, from a basic ellipsoid model to
capture gross features, to a spherical harmonic model which
can represent finer surface elements (see Section 5.1) and

finally a model based on contiguous triangular facets (hereafter
vertex model). The spin state is generally estimated in the early
stages of the shape fitting—this is normally done by using trial
values of the spin state while simultaneously fitting for the
shape itself.

Shape currently uses a Sequential Parameter Fit (SPF)
mechanism to adjust the model following a comparison
between the model projection and the radar observables. SPF
minimizes x> using a “bracket and Brent” method (Press
et al. 1992)—for each iteration, this process minimizes x> for
variations in that individual parameter only, while all other
parameters are held constant. This process is not only slow, but
it also does not guarantee convergence on a global minimum,
or even the nearest local minimum, because minimization
always progresses along a single parameter axis at a time. We
have worked toward replacing the SPF currently implemented
in shape with a modified Square Root Information Filter
(SRIF), as outlined in Section 3.1.

3. SOLUTION VIA NORMAL EQUATIONS

Before detailing the mechanics of the SRIF, it is worth
discussing the Normal Equations Method (NEM), to which
SRIF is related (Press et al. 1992). A classical NEM minimizes
the weighted residuals between a model and data with noise
assumed to be Gaussian by determining the direction in
parameter space in which 2 is decreasing fastest. Specifically,
suppose one has a set of m observables, z, with weights that are
the diagonal elements of an m X m matrix W, and a model
function f (x), where x is an n-dimensional parameter vector.
Assuming independent data points with Gaussian-distributed
errors, the probability of the model matching the data is given
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where R = z — f (x). Therefore maximizing the model prob-
ability is the same as minimizing the value
x%(x) = RTWR.
Perturbing x by some amount, 6x, and minimizing Y2 (x) over
ox yields
(ATWA)éx = ATWR,

where
_ R

ox

Thus, changing one’s parameter vector by

A

dx = (ATWA) "' ATWR (1)

yields a decrease in x2(x). For nonlinear systems, this process
is repeated multiple times until the change in x? from one
iteration to the next has passed below a fiducial fraction.
Equation (1) is also known as the weighted normal equation.

A major issue with NEM is the computation of the inverse of
the matrix AT WA. This matrix has n” elements and thus can be
quite large for a model with many parameters. In addition,
numerical stability can be a serious issue—A" WA may be ill-
conditioned, and thus taking the inverse can result in numerical
errors (see the Appendix).

One way to quantify the issue of numerical stability
is by using the condition number x(M), where
kM) = ||M]| * ||M~"||. A smaller x(M) corresponds to a
better conditioned matrix M, meaning that fewer errors will
accrue in the calculation of M~!.

Since

/i(ATWA) x K(A)?
and
k(A) > 1

for non-orthogonal matrix A, the classical NEM increases the
risk of numerical instabilities

Finally, for problems involving a very large number of
observations and model parameters, even the calculation of
(ATWA) is non-trivial, as this matrix multiplication scales like
m®n. The number of observations needed for an asteroid shape
reconstruction typically number in the millions, with poten-
tially 10°~10° free parameters.

3.1. Square Root Information Filter

The SRIF was originally developed by Bierman in 1977
(Bierman 1977; Lawson & Hanson 1995). The algorithm
minimizes Y2 for time series data with Gaussian errors, and is
inspired by the Kalman filter algorithm. SRIF is more stable,
more accurate, and faster than the algorithm currently used in
shape. SRIF is also more numerically stable (and, in some
cases faster) than a solution via normal equations. Our
implementation of SRIF includes some changes to the original
algorithm, which will be discussed in Section 4.
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SRIF gets around all the problems described above by
utilizing matrix square roots and Householder operations (see
Bierman 1977, p. 59) to increase the numerical stability when
determining éx. Instead of minimizing y2, SRIF minimizes

1 1
Q= (x*) = IW:R]|,
where W2 is the square root of the matrix W, defined such that
W= WiWw:.

In general, the square root of a matrix is multivalued, however
since W is positive-semidefinite, all square roots are real. We

select the positive root by convention.
Then, along similar lines as NEM, a change of dx is
introduced to the parameter vector x, and Q' = Q(x + Ox) is

minimized over this change.
Q' is smallest when

HW%R(x + 5x)H =~ HW%(R(x) + A(Sx)H
= HW%R(x) + W%Aéx”
is minimized.
A matrix H is defined such that HW2A is upper triangular. H
is orthogonal and can be generated by the product of n

Householder operation matrices. Note that the orthogonality of
H guarantees that

|| WiR @) + Whaox|| = HH(WéR(x) + WéAax)H
- \ |HW%R @) + HW%A5x| \
From the definition of H, HW?A can be rewritten as

li
HwA = (4 )
(%

where A’ is an n X n upper-triangular matrix, and Z is the
(m — n) X n zero-matrix. Then, rewriting

Rl
HW:R(x) =|"*|,
-]
where R, and R! are m x 1 and (n —m) x 1 arrays,

respectivély, yields
| [[ R+ Aléx
= R’ i

R] + A'éx
R! + Zox
This is clearly minimized over éx when
R, = —A'dx

Q' =

or
dx = —A""'R]. (2

Since A’ is upper triangular, its inverse can be easily
calculated, and singularity can be trivially detected. Further-
more, the condition number of the inverted matrix is
proportional to x (A), as opposed to  (A)? in the NEM case.

Finally, note that ATWA is never calculated, which, as
mentioned in Section 3, is a computationally intensive
calculation.
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4. ADDITIONS TO SRIF
4.1. Optimizations

The number of operations necessary to generate the House-
holder matrix H grows as O(n*(m — n)), where the number of
observations m always exceeds the number of parameters n.
Although this growth profile is favorable with respect to m
when compared to that of NEM (O@m?n)), it becomes
problematic for high resolution models (large n). To maintain
good performance in large n situations, we have implemented
three main optimizations to the standard SRIF.

Our first addition is to run the matrix triangularization
simultaneously on multiple cores, which results in a significant
speed-up. Note that although Householder matrices are
generated iteratively, any given iteration k requires n — k
column-wise operations, and each of these operations are
independent from each other. Therefore, the Householder
matrix calculations can be done in a thread-safe manner.

The second addition we made to the standard SRIF is the
inclusion of a secondary x> minimization for the scaling of dx,
so that

0 =0 + adx)

is minimized over . This minimization is done with an eleven
point grid search for a, from a = 1073 to a = 103>, The
additional minimization adds a trivial additional computation
cost to the overall minimization of 2, but allows for faster
convergence, and the possibility of skipping over local minima
in the y2-space.

The final change we made to the underlying SRIF algorithm
also granted the largest speed improvement. Even with the
optimizations described above, the O(n?(m — n)) nature of the
triangularization algorithm scales the computational cost
drastically with increased model complexity. Furthermore, the
need to store a derivative matrix for each iteration results in
sizeable memory overhead when working with large datasets.
To mitigate this problem, we modified the SRIF algorithm to
select a subset of the nominal free parameters during each
parameter vector adjustment, and to only fit for that subset. We
tried a variety of subset selection methods, and concluded after
testing that a ‘“semi-random” mode was the most effective.
During each parameter vector adjustment, this mode randomly
selects a fixed number, b, of parameters from the nominal set of
parameters {x, } for which the condition

k;éli*éJ
n

is satisfied, where k; is the total number of times parameter x;
has been considered over the course of the entire fit, i is the
total number of times that the parameter vector has been
adjusted, n is the total number of nominal free parameters, and
| | is the round down operator.

When fitting for both shape and spin state simultaneously
(Section 5.3), the spin axis orientation parameters were always
included in the fit at each parameter vector adjustment step.

4.2. Penalty Functions

The SPF routine can currently fit models to data while taking
into account a suite of “penalty functions” that favor models
with desirable properties. In a way, these penalty functions
serve to make the fit operate in a more global context—there
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may be a local minimum in y2-space toward which the fitting
algorithm would want to tend, but that minimum can be ruled
out a priori thanks to physical considerations. These penalty
functions include limits on ellipsoid axis ratios to avoid
absurdly elongated or flattened shapes, constraints on shape
concavities to avoid unrealistic surface topographies, and limits
on the model center of mass distance from the image center, to
name a few. We have implemented these penalty functions in
the SRIF framework by redefining the residual vector as

R’ — z —fx)
pw ’
where
P X wp
p, = :
Py X WnN

for which {p; } , {w; } are the set of penalty functions and penalty
weights, respectively, and
A" = OR" .

ox
The algorithm then progresses as described in Section 3.1, with
R” replacing R and A” replacing A’.

5. RESULTS

We tested our implementation with three different types of
data. First, we generated simple spherical harmonic shapes and
simulated images with Gaussian noise. Second, we used
existing shape models of asteroids and simulated images with
x2-distributed errors, the appropriate model for radar noise.
Third, we used an actual asteroid radar data set. In all cases, we
fit the images to recover the shapes using SRIF, SPF, and a
third-party Levenberg—Marquardt algorithm (LM), a standard
optimizing algorithm which is used across a wide variety of
fields and applications (Press et al. 1992). Except where
otherwise noted, our tests did not involve adjustments to
parameters controlling the radar scattering law, ephemeris
corrections, or spin axis orientation.

5.1. Simulated Data with Artificial Shapes

These tests consisted of generating an initial basic shape
(either spherical, oblate ellipsoid, or prolate ellipsoid), and
randomly perturbing the spherical harmonic representation of
this shape to get a new, non-trivial object.

Simulated range-Doppler images of this object were
generated, and these images were fit for using the three
aforementioned algorithms. This test serves as a good absolute
test of a fitting method, because a solution is guaranteed to exist
within the framework used (namely, a spherical harmonic
representation). Figure 2 shows an example of the resulting
shape when starting with a prolate ellipsoid. Three randomly
generated objects were created for each of the three basic
shapes, for a total of nine test cases.

For each test case, we then generated between 20 and 30
simulated radar images and added Gaussian noise such that
pixel values on the target exceed the rms deviations of the noise
by an average factor of ~5 and a peak factor of ~150. These
images were used to attempt to reconstruct the perturbed shape,
with the original basic shape (sphere, prolate ellipsoid, or
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b)

Figure 2. Example of artifical shape used as a test object to be fitted for. (a) The initial shape, a prolate ellipsoid, before any of the spherical harmonic parameters have

been changed. (b) A perturbed prolate ellipsoid.

oblate ellipsoid) given as the initial condition. This process was
repeated for each of the nine test cases.

The three fitting algorithms shared the same starting
conditions for each test. For each fit, the models comprised
121 free parameters (corresponding to the coefficients of a ten-
degree spherical harmonic representation), and the simulated
images contained a total of 2.4 million data points. Stopping
criteria were also normalized for the three different test types—
a fit was considered finished if the y? statistic had not changed
to within three significant digits after one hour, or twelve hours
had passed since the fit began, whichever occurred first. Time-
based stopping criteria—as opposed to iteration-based—were
chosen in order to account for fundamental differences between
the algorithms with respect to the definition of a single
iteration. In addition, fits were allowed to run past the criteria
stopping point, and the criteria were analyzed and applied
afterwards. This was to avoid missing a drop-off in x? in one
test type that might not appear in another. All times are wall
clock time.

The results of these tests (Figure 3) indicate that SRIF
consistently performs better than the currently used SPF
algorithm. In addition, SRIF appears to ultimately converge
on a lower chi-squared than LM in all cases.

SRIF also converged on a reduced chi-squared (Xfe o) of less
than 1.3 (indicating a reasonable approximation of the correct
model parameters had been found) in eight out of the nine tests,
while SPF was only able to do so in one out of the nine tests.

5.2. Simulated Data with Existing Asteroid Shape Models

We conducted another set of tests using existing shape
models of asteroids. Three cases were tested—Itokawa, the
1999 KW4 primary, and 2000 ET70 (Figure 4). As opposed to
the previous set of tests, these shapes are not guaranteed to be
well approximated with a spherical harmonic representation.
However, a best-fit spherical harmonic representation can still
be found.

For this set of images we used x2-distributed errors, which is
the correct noise model for individual images of radar echo
power. We chose a noise model such that the pixel values on
the target exceed the rms deviations of the noise by an average
factor of ~2 and a peak factor of ~60. When multiple images
are summed, one can often rely on the fact that errors approach
normality by the central limit theorem, hence the choice of
Gaussian noise for the images tested in Section 5.1.

The results of these tests are illustrated in Figure 5, and an
example comparison of a fit synthetic image to the simulated
image is shown in Figure 6. Our implementation of SRIF
clearly performs faster and with higher accuracy than both SPF
and LM.

5.3. Spin State

Jointly solving for spin state and shape is typically
challenging and time-consuming with the traditional imple-
mentation of shape. A common approach is to estimate the
spin state as best as possible with rudimentary shapes (e.g.,
ellipsoids or low-order spherical harmonic models) in a basic
grid search. One can then use the most favorable trial values of
the spin state to fit a model for the physical shape to the
observed radar images. Experience with traditional shape
indicates that the algorithm rarely deviates much from the
initial conditions given on the spin state, probably as a result of
the one-parameter-at-a-time fitting approach.

Our tests indicate that SRIF is capable of fitting a reasonable
asteroid shape, even when the initial shape and spin state
parameters are far away from their optimal values. This
advantage likely results from the joint estimation of shape and
spin parameters.

For example, Figure 7 shows the best-fit spherical harmonics
shape, as determined by SRIF, for a set of simulated images of
the asteroid Itokawa. The initial conditions for the shape
parameters were a sphere with a radius 10% larger than the
longest axis of the actual shape model. In addition, the initial
spin axis was 30° off from the spin axis with which the data
were simulated. We repeated these experiments with a variety
of starting conditions, as well as several different shape models,
with similar results.

SRIF’s capacity to fit for both shape and spin state
parameters can drastically cut down on the total time required
to obtain an accurate asteroid shape model.

5.4. Real Data: 2000 ET70

We have run shape with all three fitting algorithms on
actual radar images of the asteroid 2000 ET70 (Naidu
et al. 2013). shape was run initially with an ellipsoid model.
The starting conditions for this model were such that the
ellipsoid axes were all equal. The best fit ellipsoid model
(a/b = 1.16, b/c = 1.13) was then converted into a spherical
harmonic model with 122 model components (corresponding to
the coefficients of a ten-degree spherical harmonic representa-
tion, as well as one overall size scaling factor), which was then
fit again to the data. This process resulted in a final spherical
harmonic model (Figure 8) for the asteroid with a X?e g of 2.1.

The stopping criterion was a reduction in Xfe 4 less than 0.01
between two consecutive iterations.

For the first stage, SRIF fit a substantially better ellipsoid
than SPF did, although it took about eight minutes longer
(Table 1). For the second stage, SRIF converged on a final
solution more than two times faster than SPF. This further
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Figure 3. Results of three fitting algorithms (Sequential Parameter Fit, Levenberg—Marquardt, and Square-root Information Filter) with three artificial shapes
(perturbed versions of a sphere, oblate ellipsoid, and prolate ellipsoid). Bold lines indicate fits which converged to a xfed < 1.3. Dashed lines indicate the assumed

future state for fits that had converged on a solution before the 12-hr time frame.

corroborates the results obtained from our tests with simu-
lated data.
6. FUTURE CHANGES

The addition of SRIF to shape has improved fitting
performance, but additional changes can still be made to allow
shape to function optimally with real-world data.

6.1. Global Versus Local Variable Partitioning

The fits discussed in this paper were performed on global
parameters only—namely, parameters that are valid across

all data sets associated with the object in question. When
performing a high-fidelity fit on multiple data sets, however,
it is necessary to take into account local parameters as well.
These are model arguments which apply only at specific points
in time. For example, while the mean radius and rotation rate of
an asteroid is a global parameter, the system temperature and
ephemeris correction parameters on the third day of observa-
tions are local to the data taken on the third day of
observations.

Processing local parameters is less computationally intensive
than processing global parameters. The gradients of any
observables not within a local parameter’s timeframe are
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D
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Figure 4. Plane of sky representations of the radar-derived shape models of (a) Itokawa, (b) 1999 KW4, and (c) 2000 ET70.
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Figure 5. Results comparing SRIF, LM, and SPF operating on real asteroid shapes with simulated y?-distributed errors. Dashed lines indicate the assumed future state
for fits that had converged on a solution. These fits were run without penalty functions. Note that the solution arrived at by SPF for 1999 KW4 was a non-physical,
pebble-sized asteroid. Avoiding non-physical minima in the y? space would require human intervention to manually tweak the starting conditions. We did not perform
such tweaks in order to maintain consistency in our tests.

a)

Figure 6. (a) Example of a simulated input to the shape modeling algorithm. The input is generated by projecting the shape model into range-Doppler space at a
specific observation epoch and adding random noise. (b) The corresponding synthetic image produced by the shape modeling algorithm after fitting for the shape.

b)

known a priori to be zero. This greatly reduces the number of This means that while the total number of additional parameters
modeling function calls that must be made when considering scales like the product of the number of datasets with the
local parameters. In addition, the triangularization of a average number of local parameters per dataset, the additional
derivative matrix scales with the number of non-zero elements. computation time only scales with the average number of local
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b)

Figure 7. (a) The Itokawa shape model that was used to generate simulated radar images (Ostro et al. 2005). (b) The best-fit SRIF tenth degree spherical-harmonics
model for those simulated data, using penalty functions. The initial conditions for the shape parameters were a sphere with an offset spin axis latitude and longitude.
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Figure 8. The best SRIF fit spherical harmonic model for 2000 ET70, which is in good agreement with the model of Naidu et al. (2013).

Table 1
Run Statistics for SPF and SRIF Fits for 2000 ET70 Data

Model Xiznitial X%i nal Runtime (hours)
SPF LM SRIF SPF LM  SRIF
2000 ET70: 3.7 2.8 2.7 24 0.02 0.84 0.129
Ellipsoid
2000 ET70: 24 210 237 2.10 298 0.1725 1.36
Sph. Harm.

parameters per data set. Because of this, adding the capacity for
processing local parameters will only increase runtime by
~20%. We plan on adding this functionality in a future version
of shape.

6.2. Additional Fitting Methods

Tests that we have run with the simulated and real data have
indicated that the y2-space for shape-models is not smooth.
Figure 9 shows a two-dimensional slice of the y>-space for a
spherical harmonic model against 2000 ET70 data. The multi-
valleyed nature of this space makes it difficult for local fitting
methods to find the global minimum. In light of this, global
fitting mechanisms such as simulated annealing or Markov
Chain Monte Carlo may be better suited for this problem.
These methods can be supplemented by a gradient descent
method like SRIF. In fact, utilizing a hybrid of these methods
may prove to be the optimal solution for this class of problem.
Until such methods are implemented, convergence on a global
minimum will be dependent on a good choice of starting
conditions. This often forces shape modelers to explore a
variety of initial conditions, and identifying such starting
conditions is not always practical.

x> contour map for ET70
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Figure 9. A two-dimensional slice of the x? space for fitting shape models to
radar data. This contour map represents x 2 for a spherical harmonic model with
all parameters fixed except two of the elements of the primary coefficient
matrix. Note that the blue regions indicate low x2, and that there are several of
these regions for a derivative-based optimizer to fall toward, depending on the
initial set of starting conditions.

6.3. Additional Shape Representations

There are serious drawbacks to using spherical harmonics to
represent the radius of an object at each latitude-longitude grid
point. Many asteroid shapes are poorly approximated by this
representation (e.g., the 1999 KW4 primary) and there are
entire classes of shapes (e.g., banana) that can not be described
at all in this fashion. Traditionally, this problem has been
solved by the use of vertex models, but these shape
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representations typically involve a large number of parameters
(i.e., the coordinates of three vertices per facet). We are
currently looking into new representation methods, some of
which may allow for a greater range of shapes, while at the
same time cutting down on the number of free parameters.

7. CONCLUSIONS

We have added new optimization procedures into the
asteroid shape modeling software shape, enabling the use of
a LM algorithm or a SRIF. We implemented several
optimizations to the SRIF algorithm to increase performance
in shape inversion problems. Tests on both simulated and
actual data indicate that our additions allow shape inversion to
proceed more quickly and with better fidelity than was
previously possible. The SRIF implementation also facilitates
simultaneous fits of the spin axis orientation and shape.

APPENDIX
NUMERICAL STABILITY

Issues with numerical stability can arise when multiplying
matrices with elements at or near the square root of the machine
precision. This can lead to erroneous results, or singular
matrices for which further calculations (such as the matrix
inverse) are impossible.

For example (Bierman 1977), consider the case when

1 1—¢€
A=|1-—c¢ 1
1 1
and
W=1L
Then

— 2 _
(ATWA): 3 -2+ ¢ 3 —2¢ .

3 —2e¢ 3 -2+ ¢€?
Thus, in the case that € is equal to or less than the square root of
the machine precision,

(3 —2¢ 3 —2¢
(ATWA)_(3726 3726)'
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This matrix is singular, and thus (ATWA)~! cannot be
computed. This problem is particularly insidious because
matrix singularity in higher dimensions can be difficult to
detect.
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